China Standard Hydraulic Lift Cylinder Long Stroke Hydraulic Cylinder Mini Hydraulic Cylinders vacuum pump diy

Product Description

Products Description                                                                                                   

Product Name

HSG Series Hydraulic Cylinder

Work Press

7/14/16/21/31.5MPa     37.5/63MPa Can be Customized

Material

Aluminum,Cast Iron,45mnb Steel,Stainless Steel

Bore Size

40mm–320mm,Customizable

Shaft Diameter

20mm–220mm,Customizable

Stroke Length

30mm–14100mm,Customizable

Rod Surface Hardness

HRC48-54

Paint Color

Black,Yellow,Blue,Brown,Customizable

Mounting

Earring,Flange,Clevis.Foot,Trunnion,Customizable

Warrenty

1 Year

MOQ

1 Piece

Delivery Time

7-15 Days,Also depands on specific demands

Certification

ISO9001,CE

Company Profile                                                                                                          
QIANGLIN HYDRAULIC MACHINERY CO., LTD

QiangLin is a professional hydraulic equipment manufacturer, mainly engaged in hydraulic system design, manufacture, installation, transformation, sales, and technical services. Our manufacturing facilities are certified to the ISO 9001 standard. We are an approved supplier to many equipment manufacturers in China. We are also partners with many customers from America, Canada, Australia, Germany, England, and other European Countries. Product quality, shorter delivery time, and customer satisfaction are our long-term commitments to our CHINAMFG customers. Hope to be your partner.

FAQ:                                                                                                                             
Q1: Are you a trading company or a manufacturer?
A: We have our own factory.
Q2: Are you able to make Non-standard or customized products?
A: Yes, we can.
Q3: How long is your delivery time?
A: Normally, the delivery time is 7 days if we have stock, 15-30 working days if we don’t. but it
also depends on the product
requirements and quantity.
Q4: Do you provide samples? are the samples free or not?
A: Yes, we can provide samples, but they are not free of charge.
Q5: What are your payment terms?
A: 30% deposit T/T or Irrevocable L/C at sight, If you have any questions, please feel free to
contact us.
Q6: What are your After-sales services?
A: Before shipment, Each individual product will be strictly inspected on our factory QC Process
System. In addition, We have a
Customer Service team to respond to customers’ questions within 12 hours. Being helpful in
solving customers’ problems is always our goal.

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

lift cylinder

How does a lift cylinder contribute to smooth and controlled lifting motion?

A lift cylinder plays a crucial role in ensuring smooth and controlled lifting motion in various applications. Here’s an explanation of how a lift cylinder contributes to this:

1. Hydraulic Operation:

A lift cylinder typically operates using hydraulic power. Hydraulic systems utilize pressurized fluid to generate force and motion. The lift cylinder is connected to the hydraulic system, and when the hydraulic fluid is pressurized, it exerts force on the piston inside the cylinder. This force causes the cylinder to extend or retract, enabling the lifting motion. The hydraulic operation of the lift cylinder provides a smooth and consistent force, resulting in a controlled and precise lifting motion.

2. Synchronization:

In some applications, multiple lift cylinders are used together to achieve synchronized lifting. These cylinders work in tandem, ensuring that the lifting force is evenly distributed and that the load remains level throughout the lifting process. The synchronization of lift cylinders contributes to a smooth and balanced lifting motion, reducing the risk of tilting or instability.

3. Control Valves:

Lift cylinders are often equipped with control valves that allow operators to control the flow and pressure of the hydraulic fluid. By adjusting these control valves, operators can regulate the speed and force of the lifting motion. This provides precise control over the lifting process, allowing for smooth and controlled movements tailored to the specific requirements of the application.

4. Damping and Cushioning:

Some lift cylinders incorporate damping and cushioning mechanisms to further enhance the smoothness and control of the lifting motion. These mechanisms help absorb shocks and vibrations, preventing sudden jolts or jerky movements during the lifting process. Damping and cushioning features contribute to a more comfortable and controlled lifting experience, particularly when dealing with delicate or sensitive loads.

5. Load Capacities:

Lift cylinders are designed to handle specific load capacities based on their size, construction, and specifications. By selecting the appropriate lift cylinder for the intended load, operators can ensure that the lifting motion remains smooth and controlled. Overloading or underloading the lift cylinder can lead to instability or uneven lifting, affecting the overall smoothness and control of the motion.

In summary, a lift cylinder contributes to smooth and controlled lifting motion through its hydraulic operation, synchronization (if applicable), the use of control valves, damping and cushioning mechanisms, and appropriate load capacities. These factors work together to provide reliable and precise lifting, enhancing safety and efficiency in various applications.

lift cylinder

How Does a Lift Cylinder Contribute to Load Leveling and Distribution?

A lift cylinder plays a significant role in load leveling and distribution, ensuring stability and balanced weight distribution in various applications. Here’s a detailed explanation of how a lift cylinder contributes to load leveling and distribution:

  1. Vertical Force Generation:
  2. When a lift cylinder is activated, it generates a vertical force that lifts or supports a load. The force exerted by the cylinder is directly proportional to its hydraulic or pneumatic pressure and the effective area of the piston. By adjusting the pressure or controlling the flow of fluid or gas into the cylinder, the force can be precisely regulated to achieve load leveling and distribution.

  3. Multi-Cylinder Systems:
  4. In applications where load leveling and distribution are critical, multiple lift cylinders may be used in a system. These cylinders work in synchronization to evenly distribute the load and maintain balance. By connecting the cylinders in parallel or series, the hydraulic or pneumatic pressure can be distributed across all cylinders, ensuring that each cylinder contributes proportionately to the load leveling and distribution process.

  5. Self-Leveling Mechanisms:
  6. Some lift cylinder systems incorporate self-leveling mechanisms to automatically adjust the position and angle of the load. These mechanisms utilize sensors or feedback systems that monitor the load distribution and make real-time adjustments to the lift cylinders. If an imbalance or uneven weight distribution is detected, the self-leveling mechanisms activate the appropriate lift cylinders to counteract the imbalance and restore equilibrium. This contributes to load leveling and distribution, preventing excessive stress on specific areas or components.

  7. Force Sensing and Control:
  8. Advanced lift cylinder systems may employ force sensing and control technologies to achieve precise load leveling and distribution. Force sensors are integrated into the lifting mechanism, allowing real-time monitoring of the forces exerted by the cylinders. This information is then used to adjust the hydraulic or pneumatic pressure, ensuring that each cylinder contributes optimally to the load distribution. By continuously monitoring and controlling the forces, the lift cylinder system can adapt to changing load conditions and maintain stable load leveling and distribution.

  9. Structural Support and Stability:
  10. Lift cylinders provide structural support and stability to the load-bearing components in various applications. By evenly distributing the load, the cylinders help prevent excessive stress or strain on specific components. They ensure that the weight is evenly spread across the supporting structure, reducing the risk of structural damage or failure. Lift cylinders also contribute to the overall stability of the system, minimizing unwanted movements or vibrations caused by imbalanced loads.

  11. Customization for Specific Applications:
  12. Lift cylinders can be customized and tailored to specific applications to optimize load leveling and distribution. Factors such as cylinder size, stroke length, bore diameter, and material strength can be selected based on the load characteristics and weight distribution requirements of the particular application. By considering the specific needs of the application, lift cylinders can be designed and implemented to achieve the desired load leveling and distribution performance.

Overall, a lift cylinder is a crucial component in achieving load leveling and distribution in various applications. Whether through vertical force generation, multi-cylinder systems, self-leveling mechanisms, force sensing and control, structural support, or customization, lift cylinders contribute to maintaining stability, balance, and even weight distribution, ensuring optimal performance and safety in diverse industrial and mechanical systems.

lift cylinder

How does a lift cylinder handle variations in lift height?

A lift cylinder is designed to handle variations in lift height by utilizing its extendable and retractable piston rod. Here’s an explanation of how a lift cylinder handles variations in lift height:

When a lift cylinder is activated, hydraulic fluid is directed into the cylinder chamber, creating pressure that extends the piston rod. As the piston rod extends, it pushes against the load, lifting it to the desired height.

When there are variations in lift height, the lift cylinder adjusts accordingly by controlling the extension and retraction of the piston rod. Here’s how it works:

1. Extending the Piston Rod:

When the lift height needs to increase, the lift cylinder extends the piston rod further. This extension is achieved by increasing the flow of hydraulic fluid into the cylinder chamber. The increased fluid pressure pushes the piston and rod assembly, extending the rod and lifting the load to the required height.

2. Retracting the Piston Rod:

Conversely, when the lift height needs to decrease, the lift cylinder retracts the piston rod. This retraction is achieved by reducing the flow of hydraulic fluid into the cylinder chamber. The decreased fluid pressure allows the piston and rod assembly to retract, lowering the load to the desired height.

3. Precise Control and Positioning:

Lift cylinders are equipped with valves and control mechanisms that allow for precise control and positioning of the piston rod. By regulating the flow of hydraulic fluid and adjusting the pressure, the lift cylinder can achieve accurate and controlled movements, enabling it to handle variations in lift height with precision.

4. Adjustable Stroke Length:

Some lift cylinders have an adjustable stroke length, which refers to the distance the piston rod can travel within the cylinder barrel. By customizing the stroke length, the lift cylinder can accommodate different variations in lift height. The stroke length can be modified by adjusting the cylinder’s dimensions or incorporating additional components.

5. Integration with Control Systems:

Advanced lift cylinder systems can be integrated with control systems, such as electronic controls or programmable logic controllers (PLCs), to automate and optimize lift height adjustments. These control systems can monitor and adjust the lift cylinder’s movements based on predetermined parameters or feedback from sensors, ensuring precise and consistent lift height control.

In summary, a lift cylinder handles variations in lift height by extending or retracting the piston rod, controlling the flow and pressure of hydraulic fluid, achieving precise control and positioning, utilizing adjustable stroke length, and integrating with control systems. These capabilities enable the lift cylinder to adapt to different lift height requirements and provide accurate and controlled lifting operations.

China Standard Hydraulic Lift Cylinder Long Stroke Hydraulic Cylinder Mini Hydraulic Cylinders   vacuum pump diyChina Standard Hydraulic Lift Cylinder Long Stroke Hydraulic Cylinder Mini Hydraulic Cylinders   vacuum pump diy
editor by CX 2023-11-19